PART 2 Cellular Coverage Concepts

Lecture 2.1 why cells

Coverage for a terrestrial zone

Cellular coverage

target: cover the same area with a larger number of BSs

19 Base Station
12 frequencies
4 frequencies/cell
I
Worst case:
4 calls (all users in same cell)
Best case:
76 calls (4 users per cell)
Average case >> 12
Low transmit power

Key advantages:

-Increased capacity (freq. reuse) -Decreased tx power

Cellular system architecture

$\rightarrow 1$ BS per cell
\Rightarrow Cell: Portion of territory covered by one radio station
\Rightarrow One or more carriers (frequencies; channels) per cell

Mobile users fullduplex connected with BS

1 MSC controls many
BSs
\rightarrow MSC connected to PSTN

Cellular capacity

\rightarrow Increased via frequency reuse
\Rightarrow Frequency reuse depends on interference
\Rightarrow need to sufficiently separate cells
\rightarrow reuse pattern $=$ cluster size $(7 \rightarrow 4 \rightarrow 3)$: discussed later
\rightarrow Cellular system capacity: depends on
\Rightarrow overall number of frequencies
\rightarrow Larger spectrum occupation
\Rightarrow frequency reuse pattern
\Rightarrow Cell size
\rightarrow Smaller cell (cell \rightarrow microcell \rightarrow picocell) $=$ greater capacity
\rightarrow Smaller cell = lower transmission power
\rightarrow Smaller cell $=$ increased handover management burden
\qquad

PART 2
 Cellular Coverage Concepts

Lecture 2.2
 Clusters and CCI

Reuse patterns

\rightarrow Reuse distance:
\Rightarrow Key concept
\Rightarrow In the real world depends on
\rightarrow Territorial patterns (hills, etc)
\rightarrow Transmitted power
» and other propagation issues such as antenna directivity, height of transmission antenna, etc
\rightarrow Simplified hexagonal cells model:
\Rightarrow reuse distance depends on reuse pattern (cluster size)
\Rightarrow Possible clusters:
$\rightarrow 3,4,7,9,12,13,16,19, \ldots$

_ Giuseppe Bianchi

Reuse distance

\rightarrow General formula $D=R \sqrt{3 K}$
\rightarrow Valid for hexagonal geometry
$\rightarrow D=$ reuse distance
$\rightarrow R=$ cell radius
$\rightarrow q=D / R=$ frequency reuse factor

\mathbf{K}	$\mathbf{q}=\mathbf{D} / \mathbf{R}$
3	3,00
4	3,46
7	4,58
9	5,20
12	6,00
13	6,24

\qquad

Proof

\rightarrow Distance between two cell centers:
$\Rightarrow\left(u_{1}, v_{1}\right) \leftrightarrow \rightarrow\left(u_{2}, v_{2}\right)$
$D=\sqrt{\left[\left(u_{2}-u_{1}\right) \cos 30^{\circ}\right]^{2}+\left[\left(v_{2}-v_{1}\right)+\left(u_{2}-u_{1}\right) \sin 30^{\circ}\right]^{2}}$
\Rightarrow Simplifies to:
$D=\sqrt{\left(u_{2}-u_{1}\right)^{2}+\left(v_{2}-v_{1}\right)^{2}+\left(u_{2}-u_{1}\right)\left(v_{2}-v_{1}\right)}$
\Rightarrow Distance of cell (i,j) from $(0,0)$:

$$
D=\sqrt{i^{2}+j^{2}+i j} \sqrt{3} R
$$

$$
D_{R}=\sqrt{i^{2}+j^{2}+i j}
$$

\Rightarrow Cluster: easy to see that

$$
K=D_{R}^{2}=i^{2}+j^{2}+i j
$$

\Rightarrow hence: $D=R \sqrt{3 K}$

Possible clusters

all integer i, j values

\mathbf{i}	\mathbf{j}	$\mathbf{K}=\mathbf{i i}+\mathbf{j} \mathbf{j} \mathbf{i j}$	$\mathbf{q}=\mathbf{D} / \mathbf{R}$
1	0	1	1,73
1	1	3	3,00
2	0	4	3,46
2	1	7	4,58
2	2	12	6,00
3	0	9	5,20
3	1	13	6,24
3	2	19	7,55
3	3	27	9,00
4	0	16	6,93
4	1	21	7,94
4	2	28	9,17
4	3	37	10,54
4	4	48	12,00
5	0	25	8,66
5	1	31	9,64

CCI Computation assumptions

\rightarrow Assumptions

$\Rightarrow N_{1}=6$ interfering cells
$\rightarrow \mathrm{N}_{\mathrm{I}}=6$: first ring interferers only
\rightarrow we neglect second-ring interferers
\Rightarrow Negligible Noise N_{S} \rightarrow S/N ~ S/I
$\Rightarrow d^{-\eta}$ propagation law
$\rightarrow \eta=4$ (in general)
\Rightarrow Same parameters for all BSs
\rightarrow Same P_{tx}, antenna gains, etc

[^0]\qquad
\rightarrow Key simplification
\Rightarrow Signal for MS at distance R
\Rightarrow Signal from BS interferers at distance D

CCI computation

$$
\begin{aligned}
& \frac{S}{N} \approx \frac{S}{I}=\frac{\operatorname{cost} \cdot R^{-\eta}}{\sum_{k=1}^{N_{I}} \operatorname{cost} \cdot D^{-\eta}}=\begin{array}{c}
\text { By using the assumptions of } \\
\text { same cost and same } D:
\end{array} \\
& =\frac{1}{N_{I}}\left(\frac{R}{D}\right)^{-\eta}=\frac{1}{N_{I}}\left(\frac{D}{R}\right)^{\eta}=\frac{1}{N_{I}} q^{\eta} \begin{array}{c}
\text { Results depend } \\
\text { on ratio } q=D / R \\
\text { (q-frequency reuse factor) }
\end{array}
\end{aligned}
$$

Alternative expression: recalling that $D=R \sqrt{3 K}$

$$
\begin{aligned}
& \frac{S}{N} \approx \frac{S}{I}=\frac{1}{N_{I}}\left(\frac{R}{R \sqrt{3 K}}\right)^{-\eta}=\frac{1}{N_{I}}(3 K)^{\eta / 2}=\frac{(3 K)^{\eta / 2}}{6} \\
& N_{I}=6, \mu=4 \rightarrow \frac{S}{I}=\frac{(3 K)^{2}}{6}=\frac{3}{2} K^{2}
\end{aligned}
$$

\qquad

Examples

$\begin{aligned} & \rightarrow \text { target conditions: } \\ & \quad \Rightarrow S / /=9 \mathrm{~dB} \\ & \quad \Rightarrow \eta=4 \end{aligned}$	```->target conditions: AS=18dB => \eta=4.2```
\rightarrow Solution:	\rightarrow Solution:
$\frac{S}{I}=10^{0.9}=7.94 \approx 8$	$\frac{S}{I}[d B]=5 \eta \log (3 K)-10 \log 6$
$\frac{S}{I}=\frac{(3 K)^{\eta / 2}}{6} \left\lvert\, \Rightarrow K=\sqrt{\frac{2}{3} \cdot \frac{S}{I}}\right.$	$\log (3 K)=\frac{18+7.78}{21}=1.23$
$K \geq 2.3 \Rightarrow K=3$	$K \geq \frac{10^{1.23}}{3}=5.63 \Rightarrow K=7$

sectorization

\rightarrow Directional antennas
\rightarrow Cell divided into sectors
\rightarrow Each sector uses different frequencies
\Rightarrow To avoid interference at sector borders
\rightarrow PROS:
$\Rightarrow \mathrm{CCI}$ reduction
\rightarrow CONS:
\Rightarrow Increased handover rate

CELL a
\Rightarrow Less effective "trunking" leads to performnce impairments
\qquad

CCI reduction via sectorization three sectors case

\rightarrow I nferference from 2 cells, only
\Rightarrow Instead of 6 cells
With usual approxs
(specifically, $\mathrm{D}_{\text {int }} \sim \mathrm{D}$)
$\left[\frac{S}{I}\right]_{120^{\circ}}=\frac{R^{-\eta}}{2 D^{-\eta}}=3 \cdot\left[\frac{S}{I}\right]_{o m n i}$
$\left[\frac{S}{I}\right]_{120^{\circ}} d B=\left[\frac{S}{I}\right]_{\text {omni }} d B+4.77$

Conclusion: 3 sectors $=4.77 \mathrm{~dB}$ improvement

= Giuseppe Bianchi

Traffic generated by one user (statistical notion of traffic)

example

$\rightarrow 5$ users

\rightarrow Each user makes an average of 3 calls per hour
\rightarrow Each call, in average, lasts for 4 minutes

$$
\begin{aligned}
& \qquad A_{i}=3\left[\frac{\text { calls }}{\text { hour }}\right] \times \frac{4}{60}[\text { hours }]=\frac{1}{5}[\text { erl }] \\
& \qquad A=5 \times \frac{1}{5}[\text { erl }]=1[\text { erl }] \\
& \text { Meaning: in average, there is } 1 \text { active call; } \\
& \text { but the actual number of active calls varies } \\
& \text { from 0 (no active user) to 5 (all users active), } \\
& \text { number of active users }
\end{aligned}
$$ with given probability

$=$ Giuseppe Bianchi

Second example

$\rightarrow 30$ users
\rightarrow Each user makes an average of 1 calls per hour
\rightarrow Each call, in average, lasts for 4 minutes
$A=30 \times\left(1 \cdot \frac{4}{60}\right)=2$ Erlangs
SOME NOTES:
-In average, 2 active calls (intensity A);
-Frequently, we find up to 4 or 5 calls;
-Prob(n.calls>8) = 0.01\%
-More than 11 calls only once over 1M
TRAFFIC ENGINEERING: how many channels to reserve for these users!

n. active users	binom	probab	cumulat
0	1	1,3E-01	0,126213
1	30	2,7E-01	0,396669
2	435	2,8E-01	0,676784
3	4060	1,9E-01	0,863527
4	27405	9,0E-02	0,953564
5	142506	3,3E-02	0,987006
6	593775	1,0E-02	0,996960
7	2035800	2,4E-03	0,999397
8	5852925	5,0E-04	0,999898
9	14307150	8,7E-05	0,999985
10	30045015	1,3E-05	0,999998
11	54627300	1,7E-06	1,000000
12	86493225	1,9E-07	1,000000
13	119759850	1,9E-08	1,000000
14	145422675	1,7E-09	1,000000
15	155117520	1,3E-10	1,000000
16	145422675	8,4E-12	1,000000
17	119759850	5,0E-13	1,000000
18	86493225	2,6E-14	1,000000
19	54627300	1,2E-15	1,000000
20	30045015	4,5E-17	1,000000
21	14307150	1,5E-18	1,000000
22	5852925	4,5E-20	1,000000
23	2035800	1,1E-21	1,000000
24	593775	2,3E-23	1,000000
25	142506	4,0E-25	1,000000
26	27405	5,5E-27	1,000000
27	4060	5,8E-29	1,000000
28	435	4,4E-31	1,000000
29	30	2,2E-33	1,000000
30	1	5,2E-36	1,000000

A note on binomial coefficient computation

$\binom{60}{12}=\frac{60!}{12!48!}=1.39936 e+12$
but $60!=8.32099 e+81$ (overflow problems!!)

$$
\begin{aligned}
\binom{60}{12} & =\exp \left(\log \binom{60}{12}\right)=\exp (\log (60!)-\log (12!)-\log (48!))= \\
& =\exp \left(\sum_{i=1}^{60} \log (i)-\sum_{i=1}^{12} \log (i)-\sum_{i=1}^{48} \log (i)\right) \quad \text { (no overflow! ! before exp...) }
\end{aligned}
$$

$\binom{60}{12} A_{i}^{12}\left(1-A_{i}\right)^{48}=$
$=\exp \left(\sum_{i=1}^{60} \log (i)-\sum_{i=1}^{12} \log (i)-\sum_{i=1}^{48} \log (i)+12 \log \left(A_{i}\right)+48 \log \left(1-A_{i}\right)\right)$
(no overflow! ! never!)
= Giuseppe Bianchi

Infinite Users

Assume M users, generating an overall traffic intensity A
(i.e. each user generates traffic at intensity $A_{i}=A / M$).

We have just found that
$P[\mathrm{k}$ active calls, M users $]=\binom{M}{k} A_{i}^{k}\left(1-A_{i}\right)^{M-k}=\frac{M!}{(M-k)!k!}\left(\frac{A}{M}\right)^{k} \frac{\left(1-\frac{A}{M}\right)^{M}}{\left(1-\frac{A}{M}\right)^{k}}$
Let $M \rightarrow$ infinity, while maintaining the same overall traffic intensity A
$P[\mathrm{k}$ active calls, ∞ users $]=\lim _{M \rightarrow \infty} \frac{M!}{(M-k)!} \cdot \frac{1}{k!} \cdot \frac{A^{k}}{M^{k}} \cdot\left(1-\frac{A}{M}\right)^{M} \cdot\left(1-\frac{A}{M}\right)^{-k}=$ $=\frac{A^{k}}{k!} \cdot \lim _{M \rightarrow \infty} \frac{M(M-1) \cdots(M-k+1)}{M^{k}} \cdot\left[\left(1-\frac{A}{M}\right)^{-\frac{M}{A}}\right]^{-A} \cdot\left(1-\frac{A}{M}\right)^{-k}=e^{-A} \frac{A^{k}}{k!}$

$$
\begin{gathered}
\text { POisSOn Distribution } \\
30 \% \\
25 \% \\
20 \%
\end{gathered}
$$

Limited number of channels

THE most important problem in circuit switching
\rightarrow The number of channels C is less than the number of users M (eventually infinite)
\rightarrow Some offered calls will be "blocked"
\rightarrow What is the blocking probability?
\Rightarrow We have an expression for P[k offered calls]
\Rightarrow We must find an expression for
P[k accepted calls]
\Rightarrow As:
$P[$ block $]=P$ [C accepted calls $]$

Channel utilization probability

Blocking probability: Erlang-B

\rightarrow Fundamental formula for telephone networks planning
$\Rightarrow A_{0}=$ offered traffic in Erlangs
Efficient recursive computation available
$E_{1, C}\left(A_{o}\right)=\frac{A_{o} E_{1, C-1}\left(A_{o}\right)}{C+A_{o} E_{1, C-1}\left(A_{o}\right)}$

NOTE: finite users

```
-> Erlang-B obtained for the
infinite users case
OIt is easy (from queueing
        theory) to obtain an
        explicit blocking formula
        for the finite users case:
\ ENGSET FORMULA:
```

$\Pi_{\text {block }}=\frac{A_{i}^{C}\binom{M-1}{C}}{\sum_{k=0}^{C} A_{i}^{k}\binom{M-1}{i}}$
$A_{i}=\frac{A_{o}}{M}$
Giuseppe Bianchi

Capacity planning

\rightarrow Target: support users with a given Grade Of Service (GOS)
\Rightarrow GOS expressed in terms of upper-bound for the blocking probability
\rightarrow GOS example: subscribers should find a line available in the 99% of the cases, i.e. they should be blocked in no more than 1% of the attempts
\rightarrow Given:
\rightarrow C channels
\rightarrow Offered load A_{o}
\rightarrow Target GOS B target
$\Rightarrow C$ obtained from numerical inversion of

$$
B_{\text {target }}=E_{1, C}\left(A_{o}\right)
$$

- Giuseppe Bianchi

Channel usage efficiency

Offered load (erl)
Carried load (erl)
 $A_{c}=A_{o}(1-B)$

Blocked traffic

$$
\text { efficiency: } \quad \eta=\frac{A_{c}}{C}=\frac{A_{o}\left(1-E_{1, C}\left(A_{o}\right)\right)}{C} \quad \approx \frac{A_{o}}{C} \text { if small blocking }
$$

Fundamental property: for same GOS, efficiency increases as C grows!!
\qquad
\qquad

Erlang B calculation - tables

Example: How many channels are required to support 100 users with a GOS of 2% if the average traffic per user is 30 mE ?
$100 \times 30 \mathrm{mE}=3$ Erlangs 3 Erlangs @ 2% GOS =

8 channels

Trunks	0.01	0.015	(0.02)	0.03
$\mathrm{P}(\mathrm{B})=$				
1	0.010	0.015	0.020	0.031
2	0.153	0.190	0.223	0.282
3	0.455	0.536	0.603	0.715
4	0.870	0.992	1.092	1.259
5	1.361	1.524	1.657	1.877
6	1.913	2.114	2.277	2.544
7	2.503	2.743	2.936	3.250
8	3.129	3.405	3.627	3.987
9	3.783	4.095	4.345	4.748
10	4.462	4.808	5.084	5.529

Erlang B calculation - software

\rightarrow Erlang-B formula very easy to implement
\Rightarrow Even if some tricks needed for numerical accuracy
\rightarrow Erlang-B inversion not so easy
\Rightarrow Software tools
\rightarrow Online calculator:
$\Rightarrow \underline{\text { http://mmc.et.tudelft.nl/-frits/Erlang.htm }}$
\Rightarrow Given two parameter, calculates the third
$\rightarrow \mathrm{N}=$ number of circuits
$\rightarrow \mathrm{B}=$ blocking probability
$\rightarrow \mathrm{A}=$ offered load

Application to cellular networks
 Cell size (radius R) may be determined on the basis of traffic considerations

\rightarrow First step:
\Rightarrow Given num channels and GOS
$\rightarrow \mathrm{C}=50$ available channels in a cell
\rightarrow Blocking probability $<=2 \%$
\Rightarrow Evaluate maximum cell (offered) load
\rightarrow From Erlang-B inversion(tables) $\mathrm{A}=40.25 \mathrm{erl}$

\rightarrow Third step:

\Rightarrow Given density of users $\rightarrow \delta=500$ users $/ \mathrm{km}^{2}$
\Rightarrow Evaluate cell radius

$$
\delta=\frac{M}{\pi R^{2}} \Rightarrow R=\sqrt{\frac{M}{\pi \delta}}
$$

$\Rightarrow \mathrm{R} \sim 438 \mathrm{~m}$

\rightarrow Second step

\Rightarrow Given traffic generated by each user
\rightarrow Each user: 4 calls/busy-hour
\rightarrow Each call: 2 min in average
$\rightarrow \mathrm{A}_{\mathrm{i}}=4 \times 2 / 60=0.1333 \mathrm{erl} / \mathrm{user}$
\Rightarrow Evaluate max num of users in cell

$$
\rightarrow \mathrm{M}=301.87 \sim 302
$$

Other example

\rightarrow Three service providers are planning to provide cellular service for an urban area. The target GOS is 2% blocking. Users make 3 calls/busy-hour, each lasting 3 minutes in average ($\mathrm{A}_{\mathrm{i}}=3 / 20=0.15$)
\Rightarrow Question: how many users can support each provider?
\rightarrow Provider A configuration: 20 cells, each with 40 channels
\rightarrow Provider B configuration: 30 cells, each with 30 channels
\rightarrow Provider C configuration: 40 cells, each with 20 channels
\rightarrow Provider A: $\quad \rightarrow$ Provider B: $\quad \rightarrow$ Provider C:
$\Rightarrow 40$ channels/cell
\Rightarrow at 2% : $\mathrm{A}_{0}=30.99 \mathrm{er} / \mathrm{cell}$
$\Rightarrow 619.8$ erl-total
$\Rightarrow M=4132$ overall users
$\Rightarrow 30$ channels/cell $\quad \Rightarrow 20$ channels/cell
\Rightarrow at $2 \%: A_{0}=21.93$ erl/cell $\quad \Rightarrow$ at $2 \%: A_{0}=13.18$ erl/cell
$\Rightarrow 654.9$ erl-total $\quad \Rightarrow 527.2$ erl-total
$\Rightarrow M=4386$ overall users $\quad \Rightarrow M=3515$ overall users

Compare case A with C! The reason is the lower efficiency of 20 channels versus 40

Sectorization and traffic

\rightarrow Assume cluster $K=7$
\rightarrow Omnidirectional antennas: $\quad \mathrm{CCI}=18.7 \mathrm{~dB}$
$\rightarrow 120^{\circ}$ sectors: $\quad \mathrm{CCI}=23.4 \mathrm{~dB}$
$\rightarrow \mathbf{6 0}^{\circ}$ sectors:
$\mathrm{CCI}=26.4 \mathrm{~dB}$
\rightarrow Sectorization yields to better CCI
\rightarrow BUT: the price to pay is a much lower trunking efficiency!
\rightarrow With 60 channels/ cell, GOS = 1\% ,

\Rightarrow Omni:	60 channels	$A_{0}=1 \times 46.95=46.95$ erl	$\eta=77.5 \%$
$\Rightarrow 120^{\circ}:$	$60 / 3=20$ channels	$A_{0}=3 \times 12.03=36.09 \mathrm{erl}$	$\eta=59.5 \%$
$\Rightarrow 60^{\circ}:$	$60 / 6=10$ channels	$A_{0}=6 \times 4.46=26.76 \mathrm{erl}$	$\eta=44.1 \%$

__ Giuseppe Bianchi

conclusion

\rightarrow This module has given some hints regarding:
\Rightarrow Cell sizing via propagation considerations
\Rightarrow Frequency reuse via propagation considerations
\Rightarrow Cell planning via teletraffic consideration
\rightarrow Very elementary models
\Rightarrow But sufficient to understand what's inside planning
\rightarrow No mobility!
\Rightarrow Teletraffic models need to be extended to manage handover rates!
\Rightarrow Blocking requirement for an handover call MUST be much lower than blocking for a new incoming call
\rightarrow severe math complications
\rightarrow Guard channels for handover
\rightarrow Out of the scopes of this class!

[^0]: _——Giuseppe Bianchi

