

Second example	n. active users	binom		cumulat
Second example	0	1	1,3E-01	0,126213
-	1			0,396669
	2	435	2,8E-01	0,676784
→ 30 users	3			0,863527
7 50 users	4			0,953564
Each user makes an	5			0,987006
average of 1 calls per	6			0,996960
average of 1 calls per	7			0,999397
hour	8			0,999898
N Fach call in avenue	9	14307150		
Each call, in average,	10	30045015		
lasts for 4 minutes	11	54627300		
$A = 30 \times \left(1 \cdot \frac{4}{60}\right) = 2 \text{ Erlangs}$	12	86493225		
	13	119759850		
	14	145422675		
	15	155117520 145422675		
	10	145422675		
OME NOTES:	17	86493225		
	19	54627300		
n average, 2 active calls (intensity A);	20	30045015		
o	20	14307150		
requently, we find up to 4 or 5 calls;	22			1,000000
Prob(n.calls>8) = 0.01%	23			1,000000
	24			1,000000
More than 11 calls only once over 1M	25	142506	4,0E-25	1,000000
	26	27405	5,5E-27	1,000000
	27	4060	5,8E-29	1,000000
RAFFIC ENGINEERING: how many	28	435	4,4E-31	1,000000
hannels to reserve for these users!	29			1,000000
אומווויבוס נט ובסבו על וטו נוובסל עספו לי	30	1	5,2E-36	1,000000

Application to cellular networks Cell size (radius R) may be determined on the basis of traffic considerations

→ First step:

- ⇒ Given num channels and GOS
 →C=50 available channels in a cell
 →Blocking probability<=2%
- ⇒ Evaluate maximum cell (offered) load
 → From Erlang-B inversion(tables) A=40.25 erl

→ Second step

- ⇒ Given traffic generated by each user
 → Each user: 4 calls/busy-hour
 - →Each call: 2 min in average
 - \rightarrow A_i=4x2/60=0.1333 erl/user
- $\Rightarrow \text{Evaluate max num of users in cell}$ $\Rightarrow M=301.87 \sim 302$

Giuseppe Bianchi

→ Third step:

 $\Rightarrow \text{Given density of users} \\ \Rightarrow \delta = 500 \text{ users/km}^2$

$$\Rightarrow$$
 Evaluate cell radius

 $\sqrt{\pi\delta}$

$$\delta = \frac{m}{\pi R^2} \implies R =$$
$$\Rightarrow R \sim 438 \text{m}$$

