Mobile Communications

GSM

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

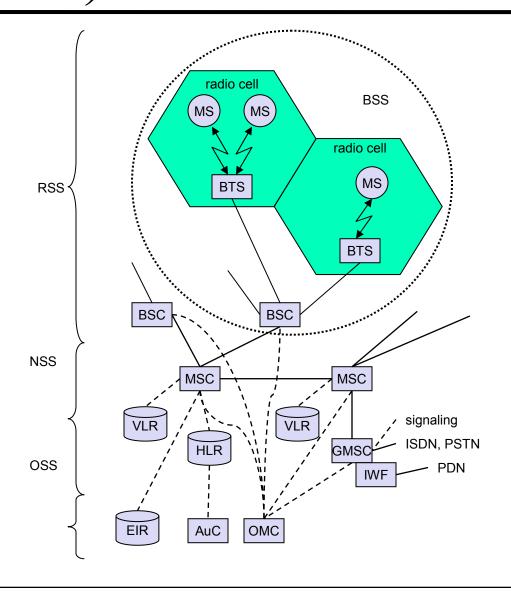
Acknowledgements

- These slides are based on the slides developed by
 - » Prof. Jochen Schiller
 - Slides from the book "Mobile Communication: Wireless Telecommunication Systems"
 - http://www.jochenschiller.de
 - » Prof. Mário Jorge Leitão
 - http://www.fe.up.pt/~mleitao/

- ♦ What are the main network elements of GSM?
- What are the GSM addresses?
- How is the data transmitted over the air interface?
- What are the main logical channels?
- ♦ What is the GSM protocol stack for signalling?
- How is a Mobile Terminated Call processed?
- ◆ How is a Mobile Initiated Call processed?

GSM - Overview

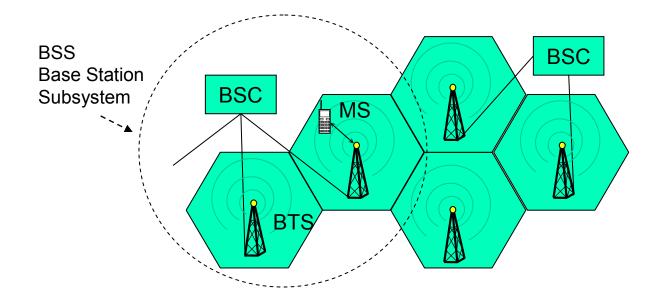
- Formerly: Groupe Spéciale Mobile (founded 1982)
- Now: Global System for Mobile Communication
- Pan-European standard
 - » ETSI, European Telecommunications Standardisation Institute
- Seamless roaming within Europe possible
- Many providers all over the world


Services

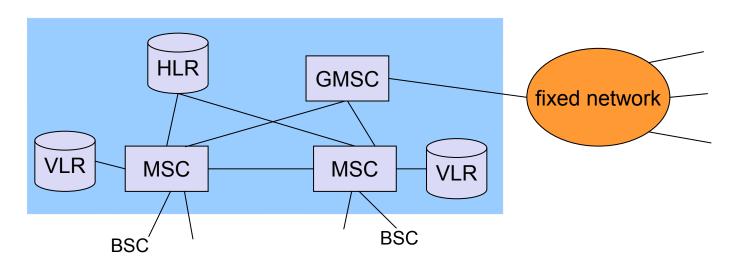
- Basic services
 - » voice services, data services, short message service
- Additional services
 - » emergency number, group 3 fax
- Supplementary services
 - » identification: forwarding of caller number
 - » suppression of number forwarding
 - » automatic call-back

Basic Services

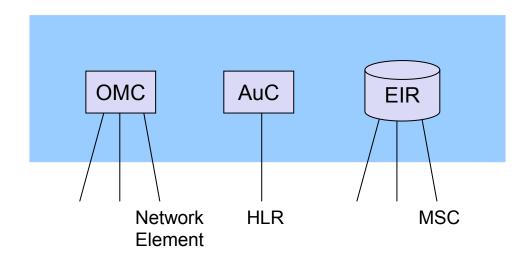
- Voice services (speech coding with protection)
 - » full rate: 13 / 12.2 kbit/s (original coder / enhanced full rate coder)
 - » half rate: 5.6 kbit/s (enhanced half rate coder)
- Data services (coding with different levels of protection)
 - » full rate: 9.6 / 4.8 / 2.4 kbit/s
 - » half rate: 4.8 / 2.4 kbit/s
- ◆ Enhanced data services → GPRS (General Packet Radio Service)
 - » various rates (typically up to 53.6 kbit/s)


Public Land Mobile Network (PLMN)

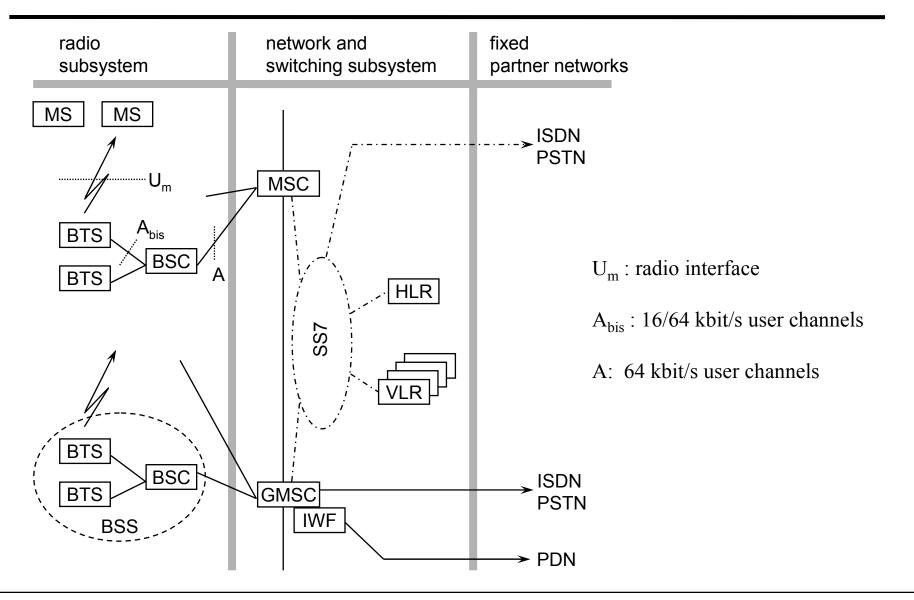
GSM₈


GSM Architecture – Radio Subsystem (RSS)

- » MS Mobile Station
 - Mobile terminal equipment
- » BTS- Base Transceiver Station
 - Transmitter, receiver and antennas
- » BSC Base Station Controller
 - Management of several BTS and MS

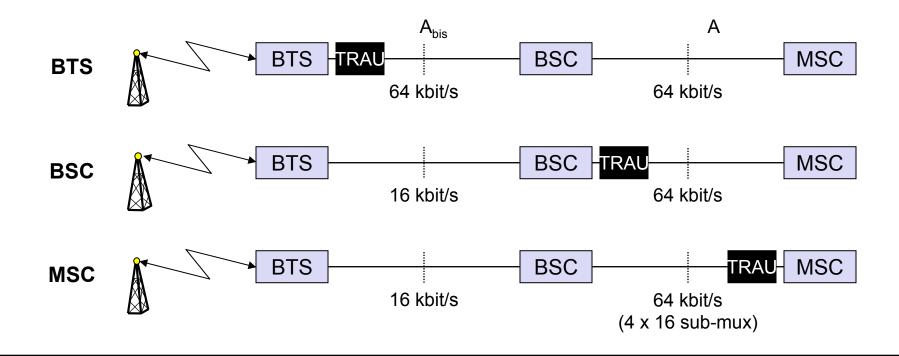

GSM Architecture – Network Subsystem (NSS)

- » Switching, mobility management,
- » Interconnection to other networks, system control
- » MSC Mobile Switching Centre: Management of connections
- » HLR Home Location Register: Associated to each PLMN
- » VLR Visitor Location Register: Associated to each MSC
- » GMSC Gateway MSC: MSC providing interconnection to other networks



GSM Architecture – Operation Subsystem (OSS)

- » Centralized operation, management and maintenance of GSM subsystems
- » OMC Operation and Management
 - Control of the radio and network subsystems
- » AuC Authentication Centre
 - Security functions
- » EIR Equipment Identity Register
 - Mobile station registration



GSM Architecture - Interfaces

Voice Transcoding and Rate Adaptation

- Need for transcoding and rate adaptation
 - » BTS 13 kbit/s air-interface (original coder)
 - » MSC 64 kbit/s ISDN type switching (PCM, A-law)
- 3 options for Transcoding and Rate Adapter Unit (TRAU)

Mobile Addresses

- Several mobile numbers are needed
 - » IMSI International Mobile Subscriber Identity
 - Mobile Country Code (MCC) + Mobile Network Code (MNC) + Mobile Subscriber Identification Number (MSIN)
 - uniquely identifies the user (SIM card)
 - » TMSI Temporary Mobile Subscriber Identity
 - 32 bits
 - local number allocated by VLR; may be changed periodically
 - hides the IMSI over the air interface; transmitted instead of IMSI
 - » MSRN Mobile Station Roaming Number
 - Visitor Country Code (VCC) + Visitor National destination Code (VNDC) + Current MSC code + temporary subscriber number
 - generated by VLR for all visiting users
 - helps HLR to determine current location area
 - hides the IMSI inside the network

SIM Card (Subscriber Identity Module)

- » Uniquely associated to a user
- » Stores user and location addresses
 - IMSI International Mobile Subscriber Identity
 - TMSI Temporary Mobile Subscriber Identity
 - LAI Location Area Identification
- » Supports authentication and encryption mechanisms
 - PIN Personal Identity Number
 - PUK PIN Unblocking Key
 - Ki subscriber secret authentication key
 - A3 authentication algorithm
 - A8 cipher key generation algorithm
- » Contains personal data
 - list of subscribed services
 - RAM for user directory

Base Transceiver Station, Base Station Controller

- BTS comprises radio specific functions
- BSC is the switching center for radio channels: switches calls from MSC to correct BTS

Functions	BTS	BSC
Management of radio channels		X
Frequency hopping (FH)	X	X
Management of terrestrial channels		X
Mapping of terrestrial onto radio channels		X
Channel coding and decoding	X	
Rate adaptation	X	
Encryption and decryption	X	X
Paging	X	X
Uplink signal measurements	X	
Traffic measurement		X
Authentication		Х
Location registry, location update		X
Handover management		X

Mobile Switching Center - Functions

- Switching of 64 kbit/s channels
- Paging and call forwarding
- Termination of SS7 (signaling system no. 7)
- Mobility specific signaling
- Location registration and forwarding of location information
- Generation/ forwarding of accounting and billing information

Home Location Register (HLR)

- Central master database
 - » data from every user that has subscribed to the operator
 - » one database per operator
 - » may be replicated
- Subscriber data
 - » IMSI International Mobile Subscriber Identity
 - » List of subscribed services with parameters and restrictions
- Location data
 - » current MSC/VLR address

Visitor Location Register (VLR)

- Local database
 - » data about all users currently in the domain of the VLR
 - » includes roamers and non-roamers
 - » associated to each MSC
- Subscriber identity
 - » IMSI International Mobile Subscriber Identity
- Temporary location
 - » LAI Location Area Identification
- Temporary addresses
 - » MSRN Mobile Station Roaming Number
 - » TMSI Temporary Mobile Subscriber Identity

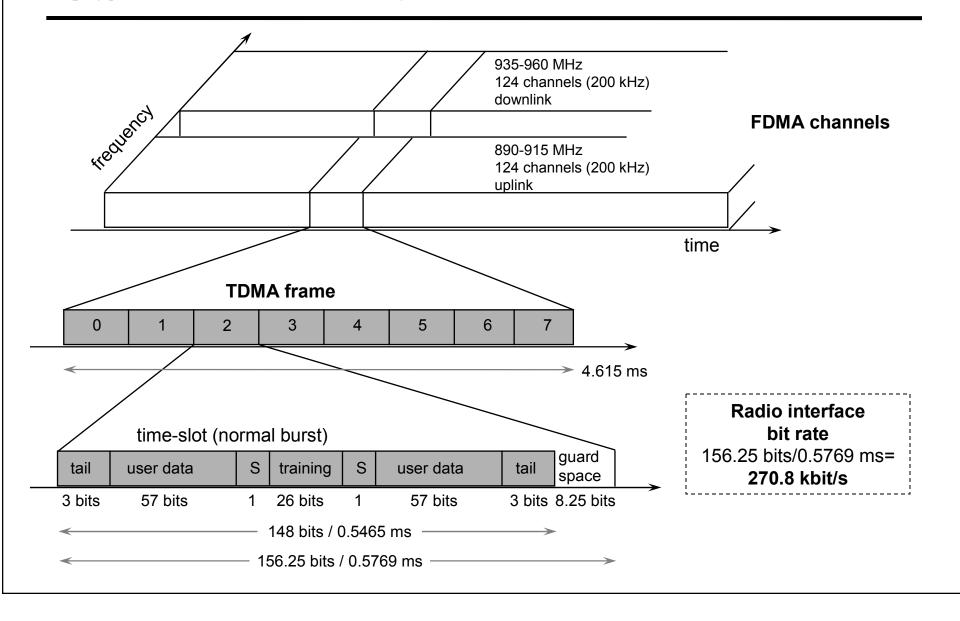
GSM Location / Mobile Addresses Summary

HLR - Home Location Register				
Permanent	IMSI - International Mobile Subscriber Identity			
Temporary	MSRN - Mobile Station Roaming Number			

VLR - Visitor Location Register			
Permanent	Permanent IMSI - International Mobile Subscriber Identity		
	LAI - Location Area Identification		
Temporary	MSRN - Mobile Station Roaming Number		
	TMSI - Temporary Mobile Subscriber Identity		

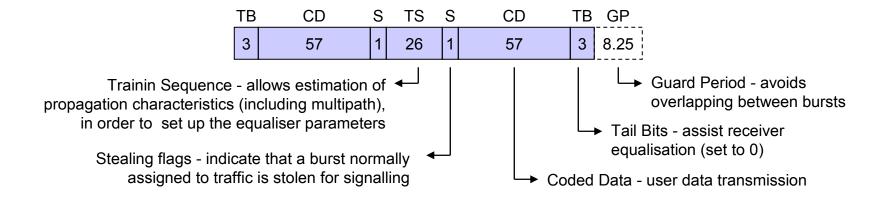
SIM - Subscriber Identity Module				
Permanent IMSI - International Mobile Subscriber Identity				
Temporary	LAI - Location Area Identification TMSI - Temporary Mobile Subscriber Identity			
	TWOI - Temporary Wobile Subscriber Identity			

AuC, EIR

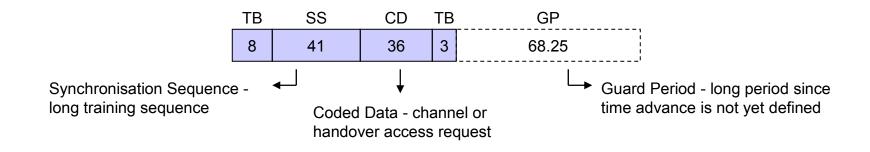

» Authentication Center (AuC)

- associated to HLR
- search key: IMSI
- supports authentication and encryption mechanisms
 - ◆ Ki subscriber secret authentication key
 - A3 authentication algorithm
 - ◆ A8 cipher key generation algorithm

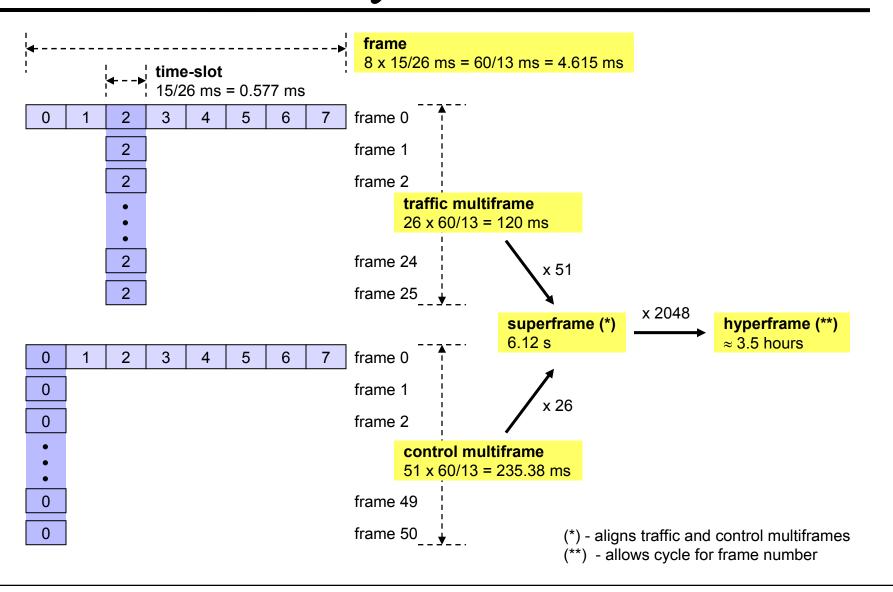
» Equipment Identity Register (EIR)

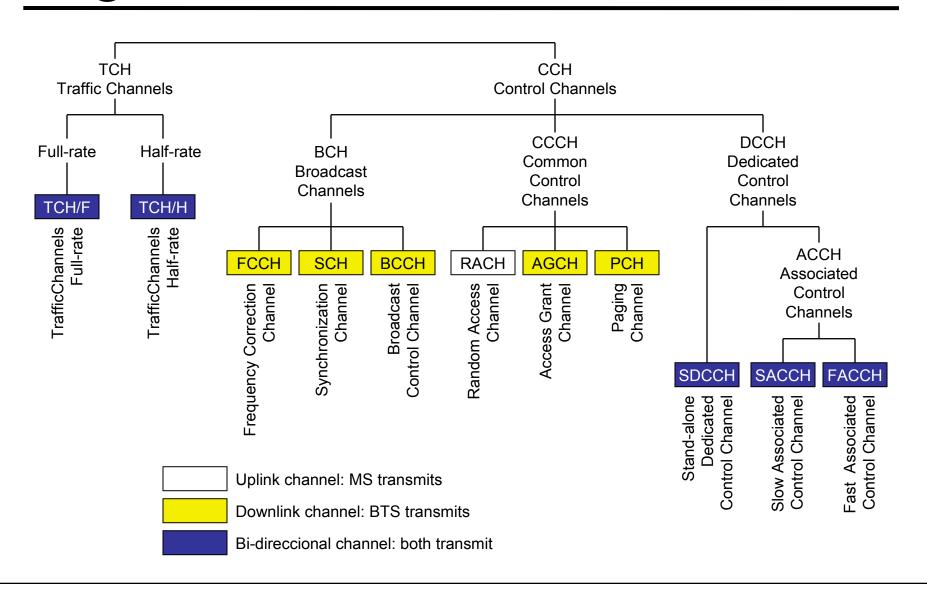

- stores mobile stations IMEI (International Mobile Equipment Identity)
- white list mobile stations allowed to connect without restrictions
- black list mobile stations locked (stolen or not type approved)
- gray list mobile stations under observation for possible problems

GSM - TDMA/FDMA



Burst Structures


Normal Burst: normal data transmission


Access Burst: MS first time access

Frame Hierarchy

Logical Channels

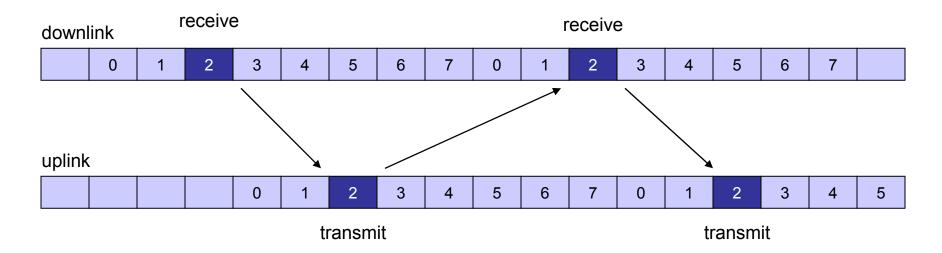
Logical Channels

Channel Direction		Direction	Application	Allocation	
TCH	TCH/H	$BTS \leftrightarrow MS$	User data	Allocated by network on	
Traffic Channels	TCH/F			demand by MS	
DOLL	FCCH		Carrier synchronization		
BCH Broadcast Channels	SCH	$BTS \to MS$	Frame synchronisation	Permanent	
Charmeis	вссн		General network information Cell information (present and adjacent)		
СССН	RACH	BTS ← MS	Request SDCCH for signalling Request TCH for handover	Multiple access with slotted Alhoa contention between MS	
Common Control	AGCH	DTC \ MC	Confirmation of SDCCH or TCH request	Permanent	
Channels PCH	PCH	BTS → MS	Allert MS to a call originated in the network	reillialietit	
DCCH	SDCCH		Registration / location updating Call control procedures	Allocated by network on demand	
Dedicated Control	SACCH	$BTS \leftrightarrow MS$	Control information between MS and BTS during the progress of a call or call set up	Associated to a specific TCH or SDCCH	
Channels	FACCH		Exchange of time critical control information during the progress of a call	Allocated by network or MS (*	

^(*) Fast allocation by setting S bit; bits are stolen from TCH

Logical channels

Channe	Channel Burs		Time-slot	Mulitiframe	Bursts / Multiframe	Capacity
TCH	TCH/H	Normal	Λην	26 frames (120 ms)	24	24 x 114 / 120 = 22.8 kbit/s
Traffic Channels	TCH/F	(114 data bits)	Any		12	12 x 114 / 120 = 11.4 kbit/s
DOL.	FCCH	Frequency correction			5	
BCH Broadcast Channels	SCH	Synchronisation	150/152/154/156 (**) (235.36 fils)		5	
Chamileis	вссн	Normal (114 data bits)		4	4 x 114 / 235.38 = 1.94 kbit/s	
СССН	RACH	Random access		51 frames (235.38 ms)	27 minimum 51 typical	
Common Control	AGCH	Normal			12 minimum	12 x 114 / 235.38 = 5.81 kbit/s
Channels	PCH	(114 data bits)			12 111111111111111	minimum
DCCH	SDCCH	Normal	TS0 - base channel (*) TS0/TS2/TS4/TS6 (**)	51 frames	4	4 x 114 / 120 = 3.8 kbit/s
Dedicated	040011		Same TS as SDCCH	(235.38 ms)	2 (***)	2 x 114 / 120 = 1.9 kbit/s
Control	SACCH	(114 data bits)	14 data bits) Same TS as TCH	26 frames	1	1 x 114 / 120 = 0.95 kbit/s
Channels F	FACCH		Same TS as TCH (bits stolen from TCH)	(120 ms)	Same as TCH	Same as TCH


^(*) Low capacity cells

^(**) High capacity cells

^{(***) 4} bursts in 2 multiframes equivalent to 2 bursts/ multiframe

Transmission / Reception Timing

- Transmit / receive frame staggering
 - » transmitter and receiver never operate at the same time
 - to simplify hardware design
 - » transmission becomes half-duplex
 - » the numbering scheme is staggered by 3 time-slots

Transmit Time Advance

» Principle of operation

- correct timing of uplink bursts at the BTS is required to avoid overlapping
- different path delays (MS-BTS distances) must be compensated
- transmission from the MS is advanced 0-63 bits under BTS control
- maximum time advance of 63 bits allows 0.233 ms round trip delay
- maximum cell radius is approximately 35 km

» Initial ranging

- Access Burst is transmitted without time advance
- Guard Period of 68.25 bits allows for a path delay due to 37 km distance
- BTS measures path delay and sends required time advance on SACCH
- MS introduces time advance on all bursts

» Adaptive control

- BTS monitors burst and measures delays with specified time advance
- if path delay varies more than 1 bit period, the new value is signalled on SACCH

Frequency hopping

- » Application of frequency hoping
 - optional, but usually implemented
 - channels with no frequency hopping: BCH and CCCH
- » Hoping sequence
 - several possible hoping algorithms
 - selected algorithm broadcast on BCCH
- » Slow frequency hopping characteristics
 - in a given time-slot, successive TDMA frame are transmitted on different carriers
 - main hoping parameters
 - ◆ period: 4.615 ms
 - frequency: 217 hops/s
 - number of bits: 1250 bits/hop

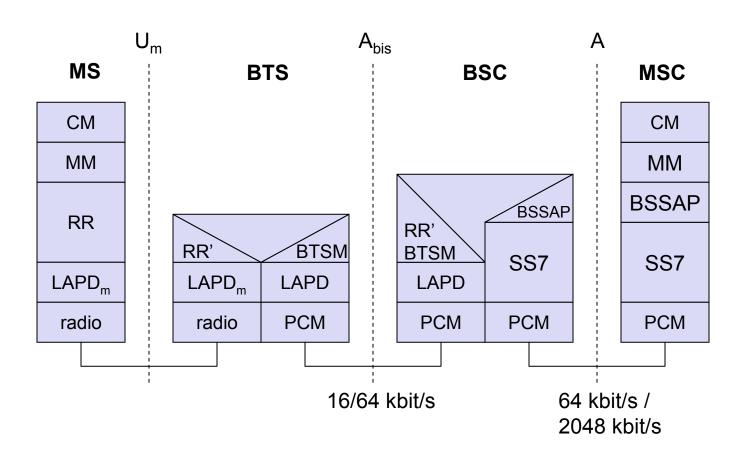
Transmission power

Mobile station power classes

GSM 900				GSM 1800	
8 W	39 dBm	vehicular	4 W	36 dBm	vehicular
5 W	37 dBm	portable	1 W	30 dBm	portable
2 W	33 dBm	portable	0.25 W	24 dBm	portable
0.8 W	29 dBm	portable			

Discontinuous transmission (DTX) for voice

- » no data transmission during periods of silence (approx. 60% of time)
 - Voice Activity Detector (VAD) algorithm suppresses TCH transmission
- » silent frames are sent to synthesise comfort noise at the receiver
- » several advantages
 - reduces interference, on average, by 3 dB
 - Increases MS battery life

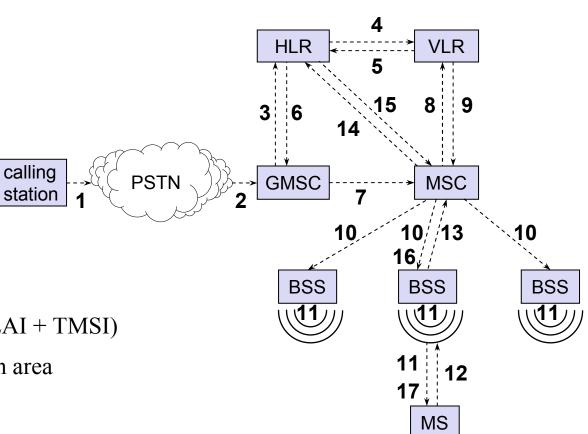

Power Control

- » Implemented on both links
- » Objective: lowest power level which provides desired quality (BER)
- » Procedure
 - MS measures power received and BER and sends result on SACCH
 - BTS sends new power level on SACCH, if and when necessary
- » control range

GSM 900	GSM 1800	Comments
5 - 39 dBm	0 - 36 dBm	effective maxima depend on cell size and MS capability control steps of 2 dB

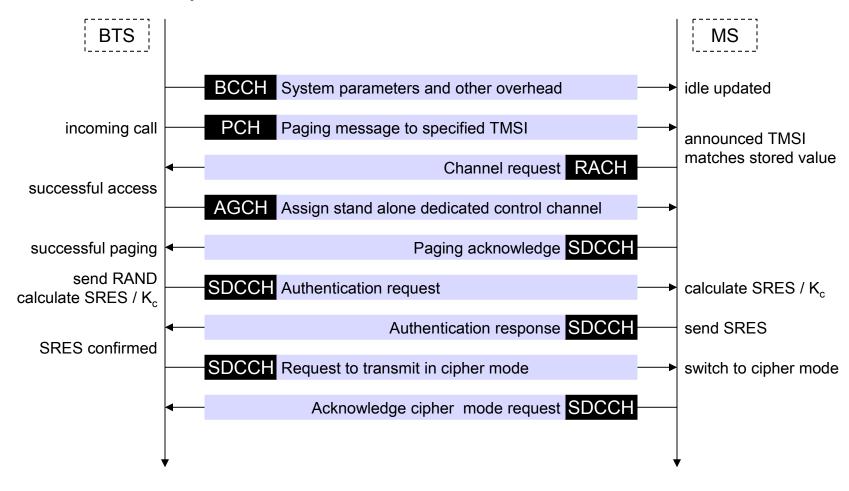
- » channels with no power control use maximum power for the cell
 - downlink BCH and CCCH: power set by BTS
 - uplink RACH
 - BCCH broadcasts maximum power level for the cell
 - ◆ MS uses this value to set RACH transmission power

GSM Protocol Layers for Signaling

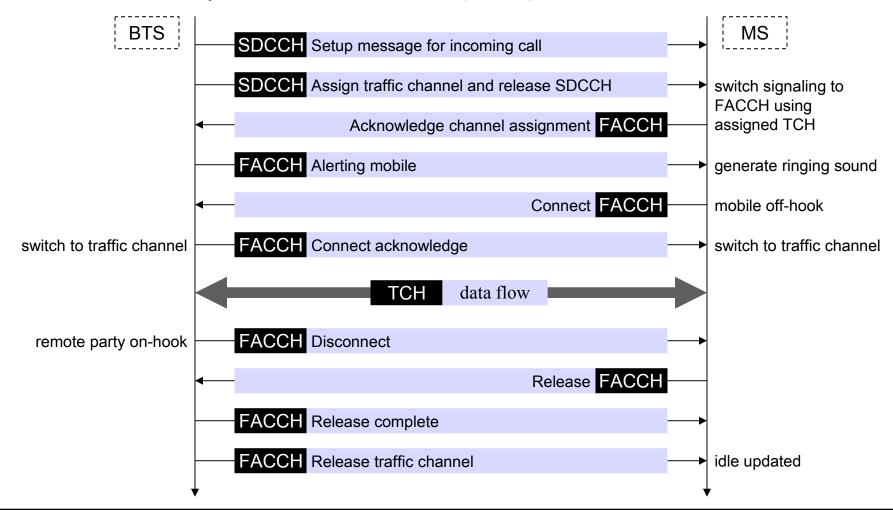


GSM Protocol Layers for Signaling

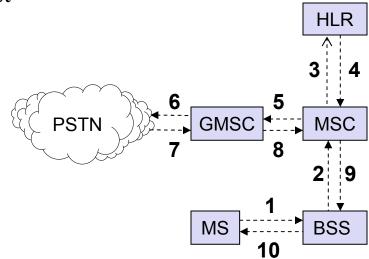
- » CM (Connection Management)
 - call control, short message service and supplementary service
- » MM (Mobility Management)
 - registration, authentication, location and handover management
- » RR (Radio Resource Management)
 - setup, maintenance and release of radio channels
 - control of radio transmission quality
- » LAPDm ("Link Access Protocol D-channel" modified)
 - modified version of ISDN LAPD protocol
- » BTSM (Base Transceiver Station Management)
 - radio resources control messages between BSC and BTS
- » BSSAP (Base Station System Application Part)
 - control of BSC by MSC


Mobile Terminated Call

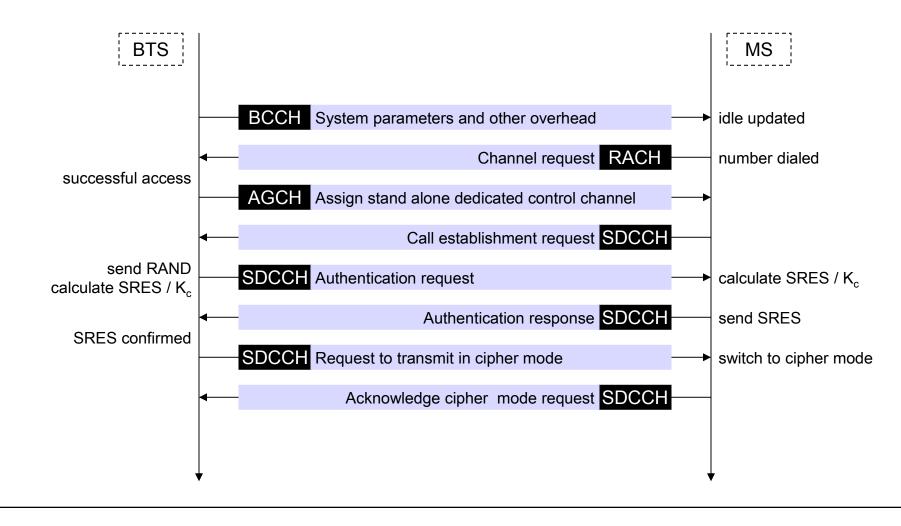
- •1: calling a GSM subscriber
- •2: forwarding call to GMSC
- •3: signal call setup to HLR
- •4, 5: get routing info (MSRN) from VLR
- •6: forward routing info to GMSC
- •7: route call to current MSC
- •8, 9: get current status of MS (LAI + TMSI)
- •10, 11: paging of MS in location area
- •12, 13: MS answers paging and authentication request
- •14, 15: security checks
- •16, 17: set up connection


Mobile Terminated Call

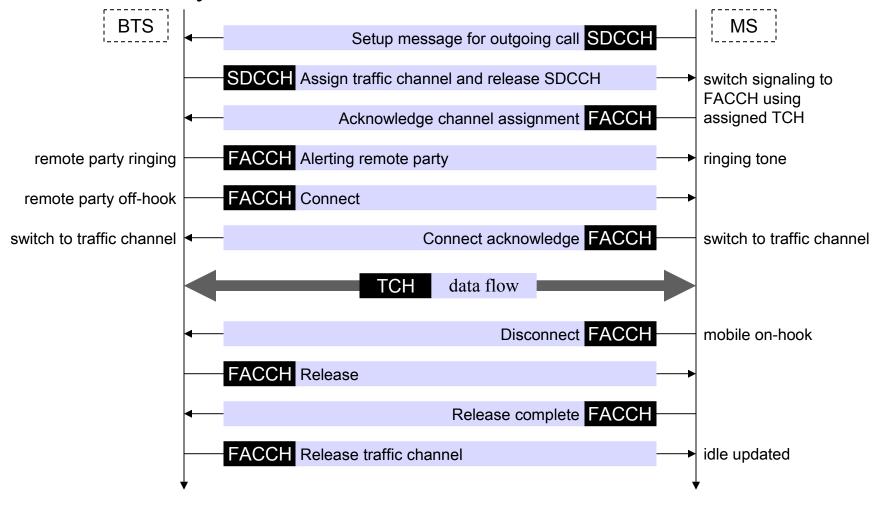
Channel activity at radio interface


Mobile Terminated Call

Channel activity at radio interface (cont.)


Mobile Originated Call

- •1, 2: connection and authentication request
- •3, 4: security check
- •5-8: check resources (free circuit)
- •9-10: set up call


Mobile Originated Call

Channel activity at radio interface

Mobile Originated Call

Channel activity at radio interface

