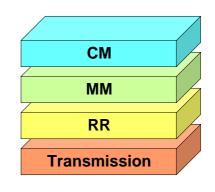
PART 5 GSM – Switching & Mobility

Lecture 5.1 Protocol architecture overview

—— Giuseppe Bianchi ———


The GSM network layer

→ Divided in three sub-layers

- ⇒ Radio Resource Management (RR)
 - → Provides a communication link between MS and MSC;
- ⇒ Mobility Management (MM)
 - →Manages DB for MS location
- ⇒ Communication Management (CM)
 - →Controls user connection

→ Underlying base:

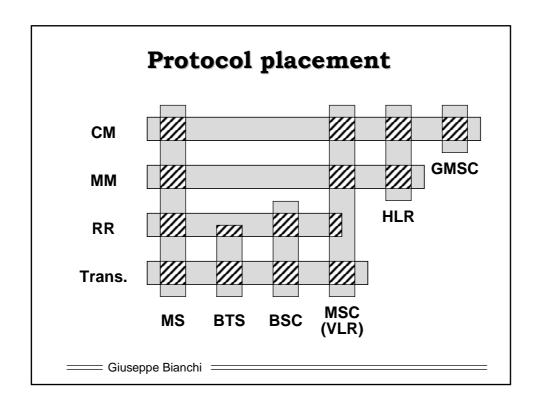
⇒ <u>Transmission level</u>

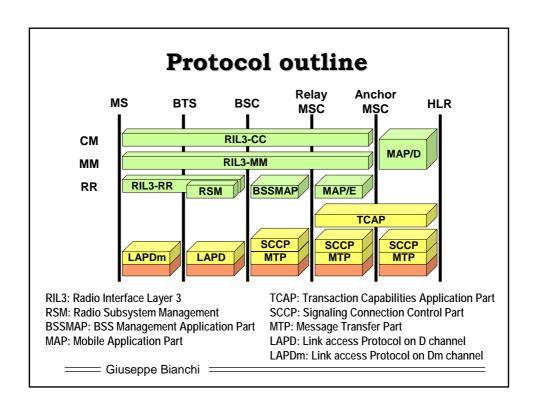
=== Giuseppe Bianchi =

RR

- → Manages administration of frequencies and channels
 - ⇒ Mostly deals with air interface
 - → Several RR functions considered in previous part
- → Guarantees stable link upon handover
 - →Surprise! handover is part of RR, not MM!
- → Function summary:
 - ⇒ Monitoring BCCH, PCH
 - ⇒ RACH administration
 - ⇒ Request/assignment of channels
 - ⇒ MS power control & synchronization
 - ⇒ Handover
- → Where is RR:
 - ⇒ MS, BTS, BSC, MSC

— Giuseppe Bianchi

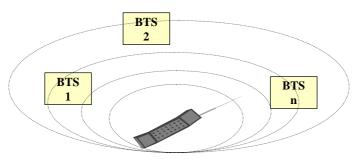

MM


- → Manages user location and tasks resulting from mobility
- **→** Function summary:
 - ⇒ TMSI assignment
 - ⇒ MS localization
 - ⇒ Location updating
 - ⇒ MS authentication
 - ⇒ MS identification, attach/detach
- → Where is MM:
 - ⇒ MS, MSC

CM

- → Controls calls, supplementary services, and SMS
- **→** Function summary:
 - ⇒ Call establishment (from MS, to MS)
 - ⇒ Emergency call management
 - \Rightarrow Call termination
 - ⇒ DTMF signaling (Dual Tone MultiFrequency)
 - ⇒ In-call modification
- → Where is CM:
 - \Rightarrow MS, MSC, GMSC

— Giuseppe Bianchi —



PART 5 GSM – Switching & Mobility

Lecture 5.2 handover (physical mobility)

Neighbor cells

→ A station must:

- ⇒ monitor beacon power level of neighbor cells
- ⇒ Keep detailed track of best 6 neighbor cells
- ⇒ DECODE their BCCH (i.e. read FCCH, SCH) to get parameters
 - →At least once every 5 minutes
 - →BSIC (from SCH) refreshed every at most 30s

— Giuseppe Bianchi —

Camping cell selection path loss criterion C1

Select cell with greatest c1(n)>0:

C1(n) = RXLEV(n) -

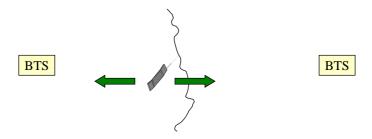
- -RXLEV_ACCESS_MIN -
- $-\max[0,(MS_TXPWR_MAX_CCH-P)]$
- → RXLEV(n): received power from BTS(n)
- → RXLEV_ACCESS_MIN: minimum received power level required for registration in the cell
 - → (parameter transmitted on BCCH; typically –98 to –106 dB)
- → MS_TXPWR_MAX_CCH: maximum allowed transmitted power on RACH
 - → (parameter transmitted on BCCH; typically 31-39 dBm)
- → P: maximum MS power (from MT class)

When cell parameters are the same, simply select cell with higher RXLEV!

==== Giuseppe Bianchi ====

Cell reselection criterion (C2)

→ Reselect cell with greatest C2>0:


C2(n) = C1(n) + CELL_RESELECT_OFFSET -TEMPORARY_OFFSET × H(PENALTY_TIME - T)

where
$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

- → T: amount of consecutive time since considered cell became with C1>0
- → PENALTY_TIME, CELL_RESELECT_OFFSET, TEMPORARY_OFFSET: BCCH parameters
- → If all parameters = 0, reselect cell with better path loss performance (no time hysteresis included)

—— Giuseppe Bianchi ———

Consequences of cell reselection

- → None, when MS idle!
 - →No need to inform BTS at all!
- → Exception:
 - ⇒ When cell reselection implies a Location Area Update
 - → Need to inform the network!
- → Additional restriction:
 - ⇒ C2>CELL_RESELECT_HYSTERESIS

==== Giuseppe Bianchi ====

handover

- → Procedure in which an MS releases a connection with a BTS, and establishes a connection with a new BTS, while ensuring that the ongoing call is maintained
 - ⇒ The MS remains in dedicated state (unlike cell reselection, where MS is in idle state)
- → Handoff: synonymous of handover
- → Needs two mechanisms
 - ⇒ **Handover preparation**: detection of cell-border crossing
 - →Based on radio link quality measurements
 - ⇒ <u>Handover execution:</u> setup of a new channel in a cell, and tear-down of a previous channel
- → Improved handover mechanisms:
 - ⇒ <u>Seamless handover:</u> when active call performance is not impaired
 - →Not possible in GSM: for about 100-200ms, communication is interrupted
 - ⇒ Soft Handover: when two channels are simultaneously set-up (old and new)
 - →Not possible in GSM; possible in UMTS

— Giuseppe Bianchi

Hard, Seamless, Soft handover

	before	during	after
Hard handover (GSM)	MSC BSS 1 BSS 2 f ₁ MS	MSC BSS 1 BSS 2 f ₁ MS	MSC BSS 1 BSS 2
Seamless (DECT)	MSC BSS 1 BSS 2 f ₁ MS	BSS 1 BSS 2	MSC BSS 1 BSS 2
Soft handover (UMTS)	MSC BSS 1 BSS 2 f, MS	BSS 1 BSS 2	MSC BSS 1 BSS 2

Handover classification

Classification by motivation

→ Rescue handover (mandatory handover)

⇒ Driven by radio channel quality degradation

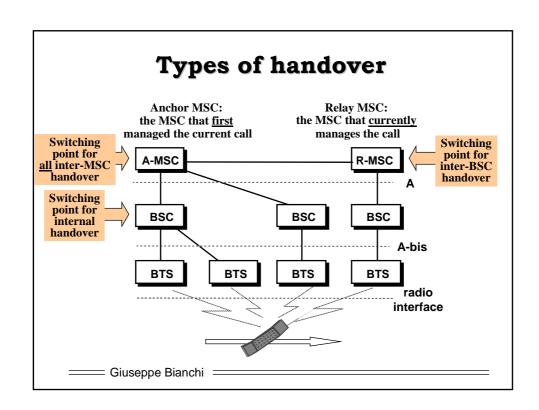
→ Confinement handover (network-directed handover)

- ⇒ Target: minimize radio interference
- ⇒ Assign new channel when old channel results critical for total interference

→ Traffic handover (network-directed handover)

- ⇒ Driven by traffic congestion conditions
- ⇒ Also called load-balancing

==== Giuseppe Bianchi =


Classification by typology

→ Internal handover

- ⇒ Intra-BTS
 - →New radio channel in the same cell
 - →Not termed as "handover" but as "subsequent assignment"
- ⇒ Inter-BTS (Intra-BSC)
 - →Under control of same BSC

→ External handover

- ⇒ Inter-BSC (Intra-MSC)
 - → Change reference BSC; may imply a location area update
- ⇒ <u>Inter-MSC</u>
 - →Most complex: need to change MSC

Handover taxonomy

→ BCHO: Base station Controlled Handover

- ⇒ Handover detection: BS
- ⇒ Handover Execution: BS

→ MCHO: Mobile Controlled Handover

- ⇒ Handover detection: MS⇒ Handover Execution: MS
- → MAHO: Mobile Assisted Handover
 - ⇒ Handover detection: MS⇒ Handover Execution: BS

→ GSM: somehow a BCHO with a flavor of MAHO

- ⇒ Handover decision always taken by BSC
- ⇒ Based on measures taken at both BTS and MS
- ⇒ New channel selection decision taken at BSC or R-MSC or A-MSC (depending on handover type) based on traffic consideration

— Giuseppe Bianchi — —

Handover preparation

→ Measurements performed at BTS

- ⇒ Up-link signal level received from MS lower than threshold →RXLEV_UL < L_RXLEV_UL H
- ⇒ Up-link signal quality (BER) received from MS
 →RXQUAL_UL < L_RXQUAL_UL_H
- ⇒ Distance between MS and BTS
 - →adaptive timing advance parameter > MAX_MS_RANGE
- ⇒ Interference level in unallocated time slots.

→ Measurements performed at MS.

- ⇒ Down-link signal level received from serving cell
 →RXLEV_DL < L_RXLEV_DL_H
- ⇒ Down-link signal quality (BER) received from serving cell →RXQUAL_DL < L_RXQUAL_DL_H
- ⇒ Down-link signal level received from *n*-th neighbor cell → RXLEV_NCELL(n) > RXLEV_MIN(n)

RX signal	From	To
level	(dBm)	(dBm)
RXLEV_0		-110
RXLEV_1	-110	-109
RXLEV_2	-109	-108
RXLEV_3	-108	-107
RXLEV_62	-49	-48
RXLEV_63	-48	-

Bit error	From	To
Ratio	(%)	(%)
RXQUAL_0	-	0.2
RXQUAL_1	0.2	0.4
RXQUAL_2	0.4	0.8
RXQUAL_3	0.8	1.6
RXQUAL_4	1.6	3.2
RXQUAL_5	3.2	6.4
RXQUAL_6	6.4	12.8
RXQUAL_7	12.8	-

A note on MS distance

- → Distance can be measured based on TA
- →TA = advance bits

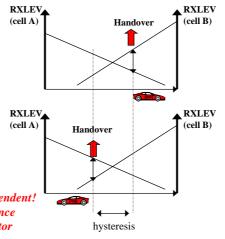
⇒Ideally, TA should be set as

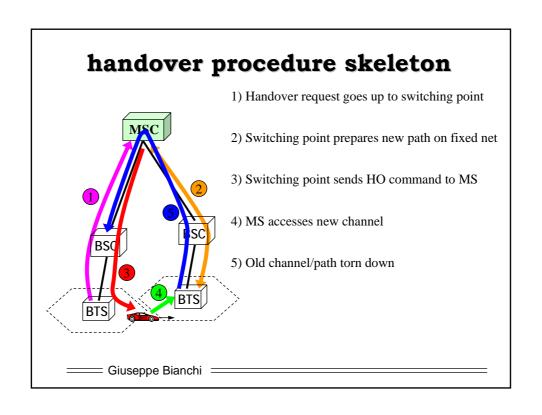
$$TA[bits] \cdot t_{bit} = \frac{2d}{c} \implies d = \frac{TA}{2} \cdot c \cdot t_{bit}$$

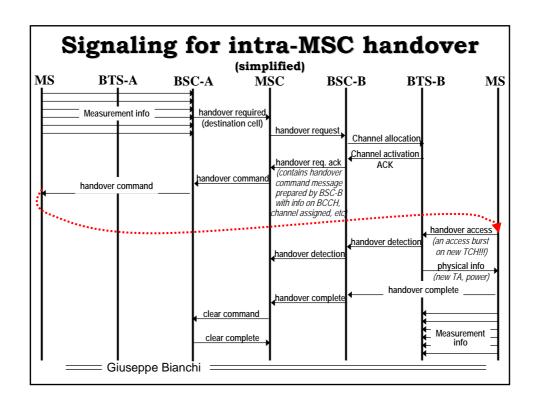
⇒ Hence, the TA resolution, in mt, is:

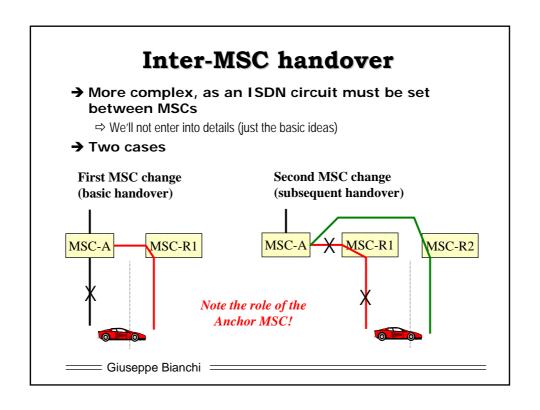
$$d(TA) = TA \frac{c \cdot t_{bit}}{2} = TA \frac{300000[mt/ms] \cdot \frac{1}{270.833}[ms]}{2} \approx TA \cdot 554mt$$

- ⇒INSUFFICIENT for microcells!
- ⇒ Sufficient only to understand we are going out of the cell

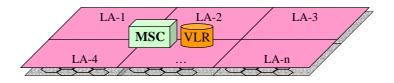

—— Giuseppe Bianchi —


Handover preparation – additional metrics


- → Transmission power
 - ⇒ Maximum MS transmission power
 - ⇒ Maximum serving BTS transmission power
- → congestion status
 - ⇒ of serving BTS
 - ⇒ of neighboring BTSs
 - → provided they can support the MS.
- → Handover Margin
 - ⇒ To avoid ping-pong handover effect
 - ⇒ 5-10 dB in normal operation; up to 30dB in urban operation (to fight shadowing)


HANDOVER ALGORITHM: operator-dependent! GSM standard SUGGESTS a simple reference algorithm, but implementation left to operator

==== Giuseppe Bianchi =



PART 5 GSM – Switching & Mobility

Lecture 5.3 location registration/update Authentication & Ciphering

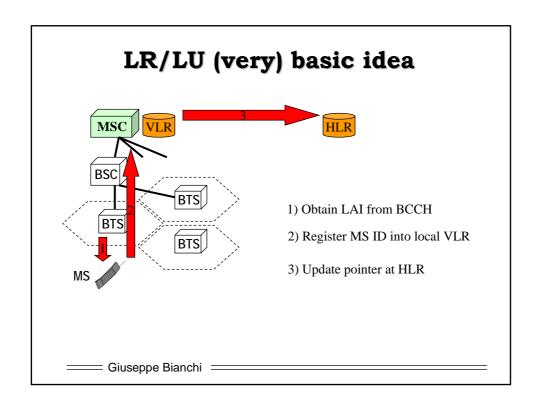
Location Area vs MSC service area

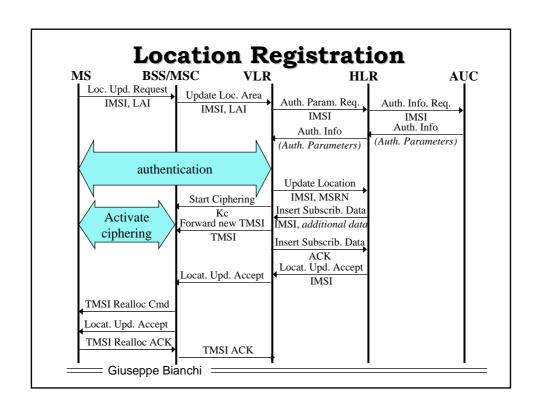
—— Giuseppe Bianchi ———

Registration vs update

- → Very similar procedures, with goals:
 - ⇒ Determine where the user is
 - ⇒ Authenticate user
- → Differences:
 - ⇒ Location Registration
 - \rightarrow User <u>first</u> access to PLMN
 - » Needs to send IMSI and receive TMSI
 - ⇒ Location Update
 - →Subsequent accesses to PLMN (either in old or new MSC/VLS)
 - » Also after MS shut-down!
 - » TMSI-based identification
- → Registered user:
 - ⇒ The PLMN knows the LA where the user is (or is supposed to be)

=== Giuseppe Bianchi =

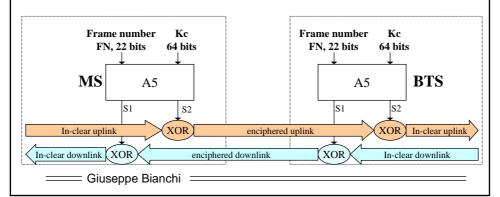

Procedure start-up


- →MS switches on
- **→**Detects BCCH carrier
 - ⇒Tune and synchronize
- → Listens to BCCH
- **→**Obtains Location Area Identifier

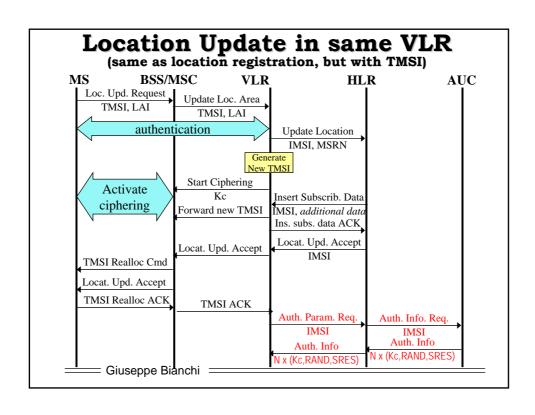
⇒LAI: [CC,MNC,LAC]

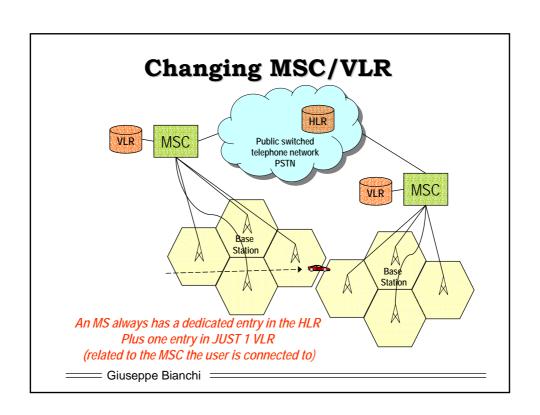
→ Country Code (CC): 3 digits → Mobile Network Code: 2 digits → Location Area Code: max 5 digits

=== Giuseppe Bianchi ===



Authentication (details)


- → Side effect of authentication:
 - ⇒ Generate encryption key Kc via A8 algorithm
- → Secret A3, A8 algorithms (one-way hash functions)
 - ⇒ Stored into the SIM
 - →Along with secret key Ki
 - ⇒ Note that roaming operator DOES NOT need to know them!
 - → Since A3,A8 run ONLY in the AUC at the home HLR
 - →Ki is NEVER transmitted away from AUC or MS!
- → Generally implemented together
 - \Rightarrow [SRES,Kc] = A38[Ki,RAND]
- → To reduce signaling, real implementation slightly different:
 - ⇒ VLR sends IMSI
 - ⇒ Receives back <u>several</u> tuples of (RAND, SRES, Kc) to be used for the considered MS also in subsequent accesses
 - Giuseppe Bianchi —


ciphering

- → A5 algorithm is known (to allow roaming)
- → Generates two ciphering sequences
 - ⇒ one for uplink, one for downlink
 - ⇒ Sequence periodic with period 26x51x2048=2,715,648 ⇒ 2^{21} =2,097,152 < 2,715,648 < 2^{22} =4,194,304
- → 114 bits per frame, depending on frame number
- → XOR-ed with burst data field

16

TMSI

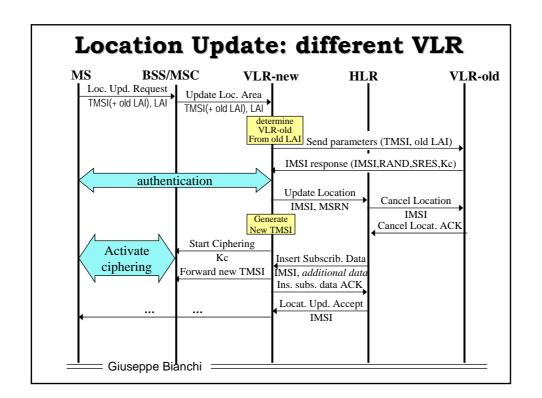
→TMSI = Temporary Mobile Subscriber Identity

- ⇒4 octets (32 bits)
- ⇒ Renewed periodically; at every LU / IMSI_attach
 - → Via TMSI_Reallocation_Command/TMSI_Reallocation_Complete
 - → RATIONALE: renew TMSI when transmitted in clear! (TMSI reallocation occurs in ciphering mode)

→ Meaningful only in a given VLR

- ⇒ Specifically, only for a given Location Area!!
 - →Some author (Mouly-Pautet) uses the term
 - » TIC (Temporary Identity Code) = 4 bytes
 - » TMSI = TIC+LAI = unambiguous user identification

→ While entering a new Location Area:


⇒ user must identify itself with TMSI+LAI pair.

—— Giuseppe Bianchi =

Operator may set a 6min up to 24hrs periodicity for LU (value transmitted on BCCH)

IMSI_attach = a special LU
in a same Location Area;

IMSI_attach follows an IMSI_detach (power-down of MS)

Special cases

- New VLR not capable of determining old VLR from old LAI
- 2. Old VLR does not recognize TMSI
 - ⇒ Identification procedure
 - → IMSI transmitted in clear

PAGING:

- Normally based on TMSI
- But when no valid TMSI information available (e.g. after a DB restore after crash), based on IMSI

— Giuseppe Bianchi —

PART 5 GSM – Switching & Mobility

Lecture 5.4 Call Management & routing

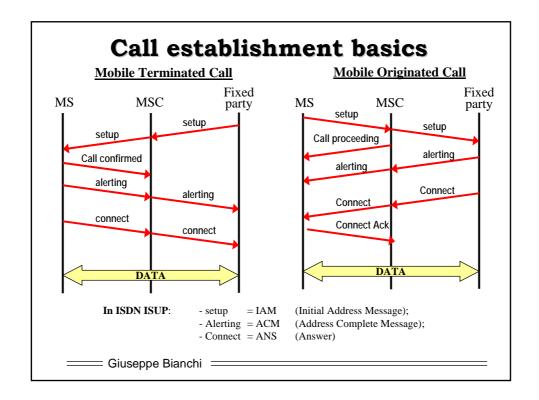
Notation

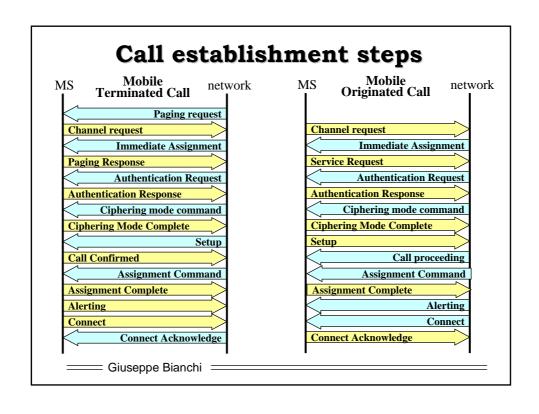
- →A call involves two "Parties"
- → Calling Party (caller)

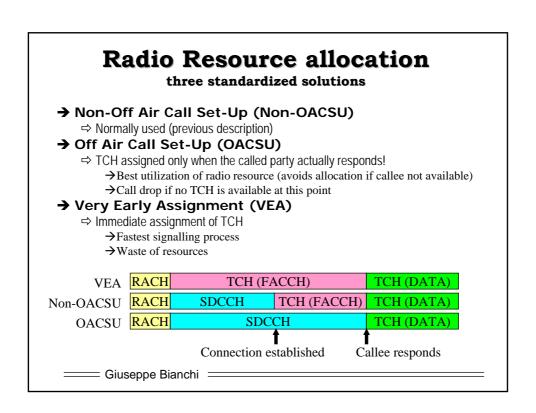
⇒user generating the call

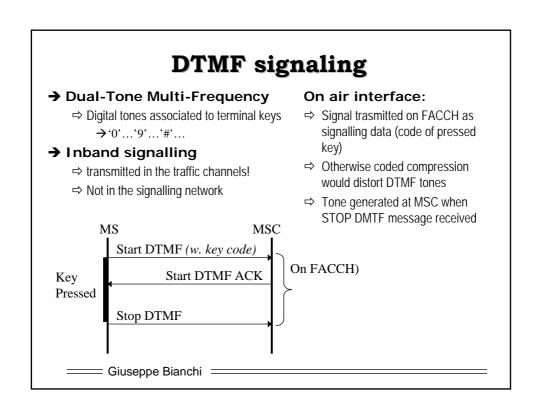
→ Called Party (callee)

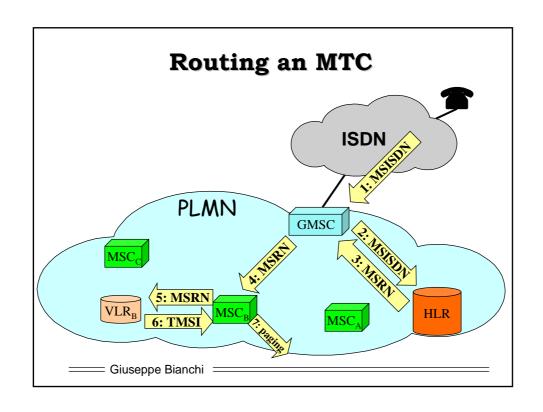
⇒user receiving the call

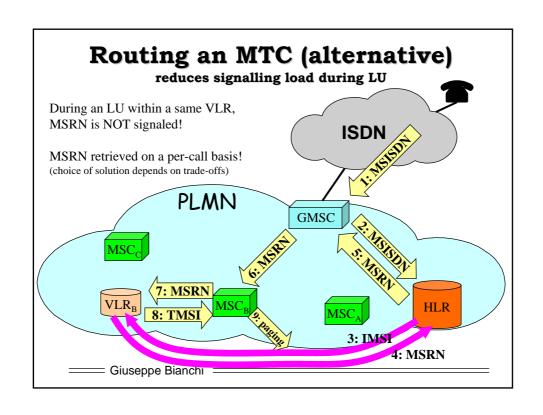

→ Mobile Originating Call (MOC)

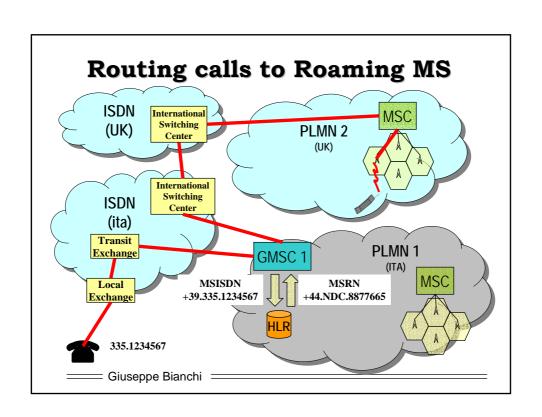

⇒Call originated by an MS

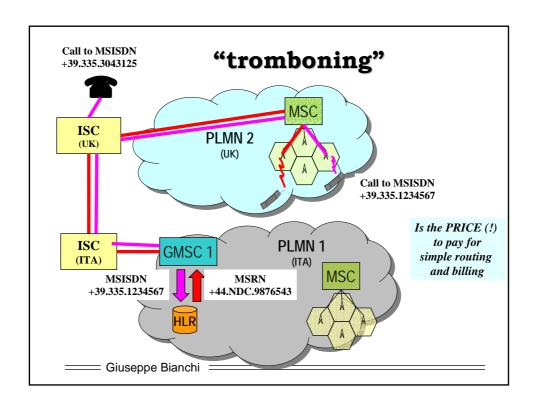

→ Mobile Terminating Call (MTC)

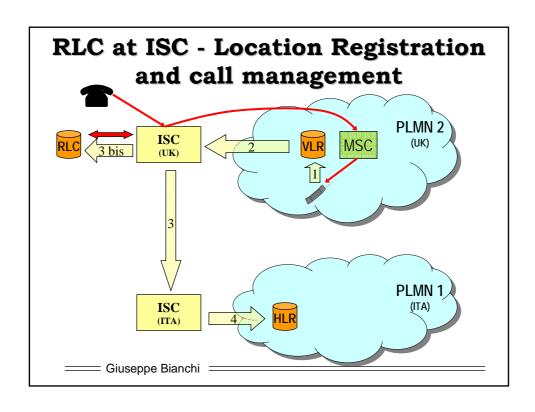

⇒Call directed to an MS


==== Giuseppe Bianchi ====



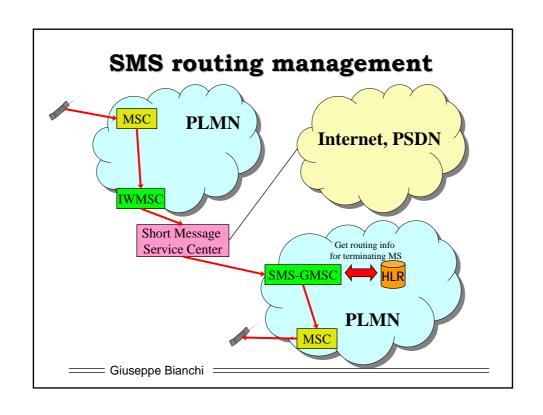


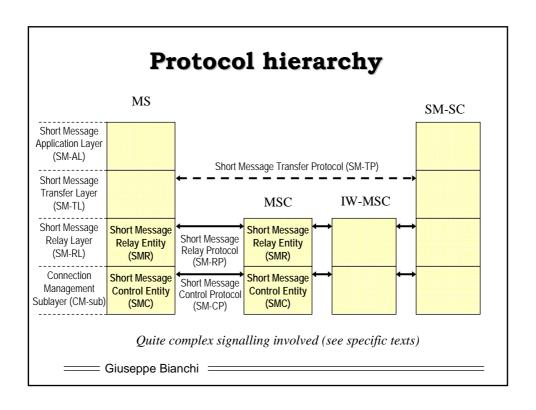



Tromboning technical solutions

→ First alternative: national-wise

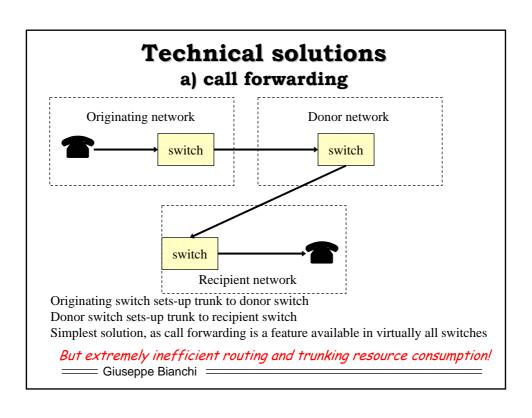
- ⇒Add a new database Roamer Location Cache (RLC)
 - → Consulted by ISCs (which MUST support GSM-MAP!)

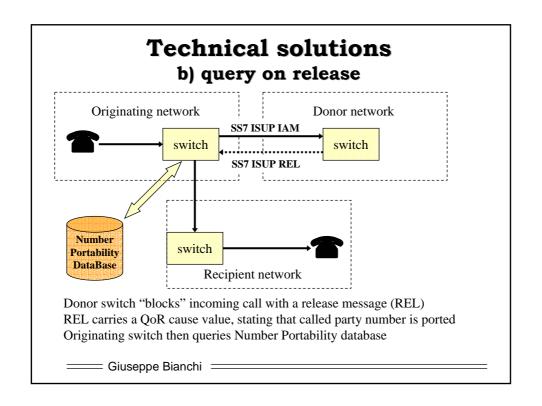

→ Second alternative: PLMN specific

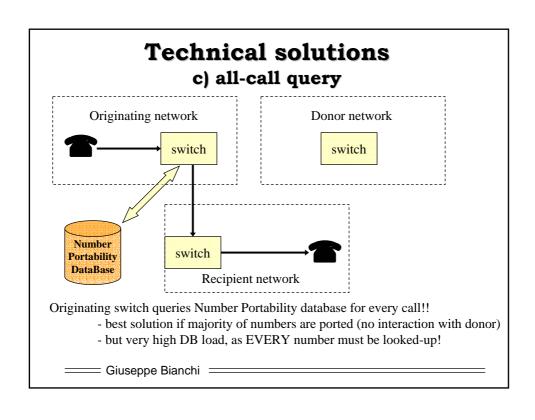

- ⇒RLC within the PLMN + associated switch
- ⇒Caller must dial special NDC number (the switch!)
 - →I.e. must know the MS is roaming in the PLMN...
- ⇒Additional devices and protocol modifications required
 - » Extensions toVLR or to GMSC
 - » Details in "Lin-Chlamtac"

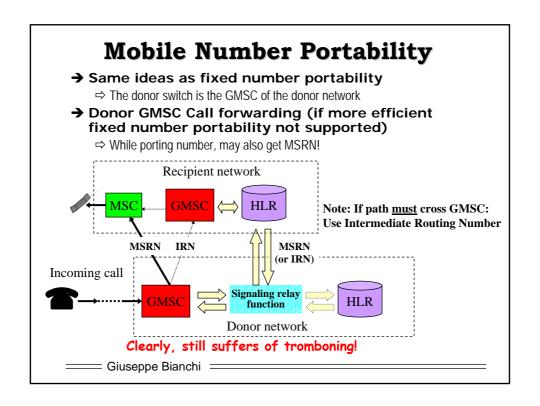
Short Message Service

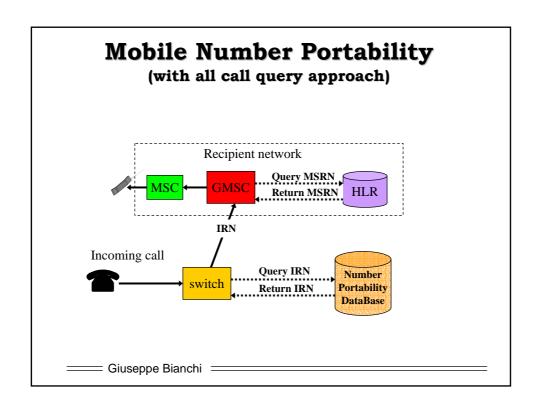
- →SMS:
 - ⇒messages up to 160 bytes
 - ⇒Message concatenation allowed
- → Transmitted on air interface over:
 - ⇒ SACCH (when user in conversation)
 - ⇒SDCCH (when user in idle state)
- → Two transmission modes in a cell:
 - ⇒ Point-to-point
 - ⇒cell broadcast
- → Connectionless service
 - ⇒ message switching (store&forward)
 - ⇒ Implemented through the Short Message Service Center


Number portability


- → Subscriber may switch operator without changing his number
- → First implemented in fixed network
 - ⇒ Recently (may 2002) extended to mobile networks
- → Essential for fair competition among network operators
 - ⇒ UK survey: 42% of corporate subscribers were willing to change mobile operator; but 96% were, if number could be ported
- → Resistence from leading operators
 - ⇒ Number portability helps <u>newer</u> operators to compete with traditional ones


—— Giuseppe Bianchi ———


Notation


- → Donor switch
 - ⇒The switch corresponding to a "ported" telephone number
- → Recipient switch
 - ⇒The switch to which the ported number is attached

